Precipitation Forecasting Workflow Banner

Network-Based Precipitation Forecasting (40 Nodes)

A Comprehensive Workflow for Thesis Research

Thesis Workflow Overview

1. Data Prep & Network Construction
  • Sort 40 Nodes (Lat $\downarrow$, Long $\uparrow$)
  • Spearman $\rho$ (1979-2014)
  • Adjacency Matrix ($\rho > 0.8$)
  • Split Nodes (80% Train, 20% Test)
2. Data Stationarization
  • Convert Non-Stationary Data
  • Remove Trends & Seasonality
  • Prepare for LSTM Input
📈➡️📉
3. LSTM Model Training
  • Train on 80% Nodes
  • Utilize 1979-2014 Data
  • Learn Temporal Dependencies
🧠⚙️
4. Precipitation Forecasting
  • Forecast 20% Test Nodes
  • Period: 2015-2023
  • Input: Test Node Data + Linked Training Node Data
🔮📊

5. Results Visualization & Evaluation

Time Series Overlay

Actual vs. Forecasted (2015-2023)

Predicted vs. Actual

Scatter Plot for Accuracy

RMSE Scores

Error Metric per Test Node

Precipitation Forecasting Workflow Banner

Network-Based Precipitation Forecasting (40 Nodes)

A Comprehensive Workflow for Thesis Research

Thesis Workflow Overview

1. Data Prep & Network Construction
  • Sort 40 Nodes (Lat $\downarrow$, Long $\uparrow$)
  • Spearman $\rho$ (1979-2014)
  • Adjacency Matrix ($\rho > 0.8$)
  • Split Nodes (80% Train, 20% Test)
2. Data Stationarization
  • Convert Non-Stationary Data
  • Remove Trends & Seasonality
  • Prepare for LSTM Input
📈➡️📉
3. LSTM Model Training
  • Train on 80% Nodes
  • Utilize 1979-2014 Data
  • Learn Temporal Dependencies
🧠⚙️
4. Precipitation Forecasting
  • Forecast 20% Test Nodes
  • Period: 2015-2023
  • Input: Test Node Data + Linked Training Node Data
🔮📊

5. Results Visualization & Evaluation

Time Series Overlay

Actual vs. Forecasted (2015-2023)

Predicted vs. Actual

Scatter Plot for Accuracy

RMSE Scores

Error Metric per Test Node

Scroll to Top